A statistical variant calling approach from pedigree information and local haplotyping with phase informative reads
نویسندگان
چکیده
MOTIVATION Variant calling from genome-wide sequencing data is essential for the analysis of disease-causing mutations and elucidation of disease mechanisms. However, variant calling in low coverage regions is difficult due to sequence read errors and mapping errors. Hence, variant calling approaches that are robust to low coverage data are demanded. RESULTS We propose a new variant calling approach that considers pedigree information and haplotyping based on sequence reads spanning two or more heterozygous positions termed phase informative reads. In our approach, genotyping and haplotyping by the assignment of each read to a haplotype based on phase informative reads are simultaneously performed. Therefore, positions with low evidence for heterozygosity are rescued by phase informative reads, and such rescued positions contribute to haplotyping in a synergistic way. In addition, pedigree information supports more accurate haplotyping as well as genotyping, especially in low coverage regions. Although heterozygous positions are useful for haplotyping, homozygous positions are not informative and weaken the information from heterozygous positions, as majority of positions are homozygous. Thus, we introduce latent variables that determine zygosity at each position to filter out homozygous positions for haplotyping. In performance evaluation with a parent-offspring trio sequencing data, our approach outperforms existing approaches in accuracy on the agreement with single nucleotide polymorphism array genotyping results. Also, performance analysis considering distance between variants showed that the use of phase informative reads is effective for accurate variant calling, and further performance improvement is expected with longer sequencing data. CONTACT [email protected] .
منابع مشابه
Comparison of haplotyping methods using families and unrelated individuals on simulated rheumatoid arthritis data
In this report, we compared haplotyping approaches using families and unrelated individuals on the simulated rheumatoid arthritis (RA) data in Problem 3 from Genetic Analysis Workshop (GAW) 15. To investigate these two approaches, we picked two representative programs: PedPhase and fastPHASE, respectively, for each approach. PedPhase is a rule-based method focusing on the haplotyping constraint...
متن کاملRead-based phasing of related individuals
MOTIVATION Read-based phasing deduces the haplotypes of an individual from sequencing reads that cover multiple variants, while genetic phasing takes only genotypes as input and applies the rules of Mendelian inheritance to infer haplotypes within a pedigree of individuals. Combining both into an approach that uses these two independent sources of information-reads and pedigree-has the potentia...
متن کاملdDocent: a RADseq, variant-calling pipeline designed for population genomics of non-model organisms
Restriction-site associated DNA sequencing (RADseq) has become a powerful and useful approach for population genomics. Currently, no software exists that utilizes both paired-end reads from RADseq data to efficiently produce population-informative variant calls, especially for non-model organisms with large effective population sizes and high levels of genetic polymorphism. dDocent is an analys...
متن کاملJoint haplotype phasing and genotype calling of multiple individuals using haplotype informative reads
MOTIVATION Hidden Markov model, based on Li and Stephens model that takes into account chromosome sharing of multiple individuals, results in mainstream haplotype phasing algorithms for genotyping arrays and next-generation sequencing (NGS) data. However, existing methods based on this model assume that the allele count data are independently observed at individual sites and do not consider hap...
متن کاملAdaptive reference-free compression of sequence quality scores
MOTIVATION Rapid technological progress in DNA sequencing has stimulated interest in compressing the vast datasets that are now routinely produced. Relatively little attention has been paid to compressing the quality scores that are assigned to each sequence, even though these scores may be harder to compress than the sequences themselves. By aggregating a set of reads into a compressed index, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 29 22 شماره
صفحات -
تاریخ انتشار 2013